organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-Benzyl-N-(4-chlorophenyl)acrylamide

Yi-Min Hu,* Li-Dong Zhang, Jing Wang, Dong Cheng and Dong Ren

College of Chemistry and Materials Science, Anhui Normal University, Anhui Key Laboratory of Functional Molecular Solids, Wuhu, Anhui 241000, People's Republic of China

Correspondence e-mail: llyyjz@nju.edu.cn

Received 17 November 2007; accepted 29 November 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.004 Å; R factor = 0.064; wR factor = 0.158; data-to-parameter ratio = 18.3.

In the molecular structure of the title compound, $C_{16}H_{14}CINO$, the acrylamide unit is essentially planar and makes dihedral angles of 80.06 (12) and 68.91 (13)°, respectively, with the benzene and phenyl rings. The dihedral angle between the two rings is 49.79 (11)°. In the crystal structure, molecules are connected *via* weak $C-H\cdots O$ and $C-H\cdots \pi$ interactions, forming a molecular tape running along the *b* axis.

Related literature

For related literature, see: Fairlamb (2004); Hu *et al.* (2003); Park & Hoffmann (1990); Otero & Cantero (1995); Riggi *et al.* (1992).

Experimental

Crystal data $C_{16}H_{14}CINO$ $M_r = 271.73$ Monoclinic, $P2_1/n$ a = 9.215 (4) Å

b = 9.210 (4) Å
c = 17.090 (8) Å
$\beta = 102.842 \ (6)^{\circ}$
V = 1414.2 (12) Å

Z = 4Mo $K\alpha$ radiation $\mu = 0.26 \text{ mm}^{-1}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{min} = 0.93, T_{max} = 0.94$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.064$ 173 parameters $wR(F^2) = 0.158$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$ 3172 reflections $\Delta \rho_{min} = -0.28 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the mid-point of atoms C15 and C16.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} C2 - H2 \cdots O1^{i} \\ C6 - H6 \cdots Cg1^{ii} \end{array}$	0.93	2.53	3.405 (4)	157
	0.93	3.02	3.75 (2)	136

T = 291 (2) K

 $R_{\rm int} = 0.057$

 $0.30 \times 0.26 \times 0.24$ mm

11395 measured reflections

3172 independent reflections

1666 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) -x, -y, -z + 1; (ii) -x, -y + 1, -z + 1. Cg1 is the mid-point of atoms C15 and C16.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT-Plus* (Bruker, 2000); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

The authors thank the National Science Foundation of Anhui Province (project No. 2004kj164zd), the Education Department of Anhui Province Program (grant Nos. 2006K J006TD and TD200707) and the National Science Foundation of China (project No. 20572001) for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2254).

References

- Bruker (2000). SMART (Version 5.0), SAINT-Plus (Version 6), SHELXTL (Version 6.1) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Fairlamb, I. J. S. (2004). Angew. Chem. Int. Ed. 43, 1048-1052.
- Hu, Y.-M., Zhou, J., Lian, H.-Z., Zhu, C.-J. & Pan, Y. (2003). Synthesis, pp. 1177–1180.
- Otero, T. F. & Cantero, I. (1995). J. Electroanal. Chem. 395, 75-78.
- Park, T. G. & Hoffmann, A. S. (1990). Biotechnol. Bioeng. 35, 152–154.
- Riggi, I. D., Gastaldi, S., Surzur, J. M. & Bertrand, M. P. M. (1992). J. Org. Chem. 50, 6118–6125.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2008). E64, o206 [doi:10.1107/S160053680706432X]

N-Benzyl-N-(4-chlorophenyl)acrylamide

Y.-M. Hu, L.-D. Zhang, J. Wang, D. Cheng and D. Ren

Comment

Many active molecules in nature contain highly functionalized heterocyclic rings (Fairlamb, 2004). In recent research, we report a novel palladium catalyzed Heck intermolecular reactions of aryl halides with the nitron-containing olefins (Hu *et al.*, 2003). We found that polyene amide was prepared by two steps (Riggi *et al.*, 1992). The substrate of *N*-benzyl-*N*-(4-chlorophenyl)acrylamide is used to obtain this pyrrole skeleton (Park & Hoffmann, 1990; Otero & Cantero, 1995).

In this paper, we report the crystal structure of the title compound, $C_{16}H_{14}CINO$ (Fig. 1). The crystal data show that all bond lengths and angles in the title compound have normal values. The bond length of C15=C16 is 1.288 (4) Å, belonging to typical C_{sp2} — C_{sp2} double bonds. The molecule contains two six-membered rings, A (C1—C6) and B (C8—C13). Rings A and B are not coplanar, the dihedral angle between ring A and ring B being 49.79 (11)°. In the structure there are a weak intermolecular C—H···O interaction [C2—H2···O1ⁱ, symmetry code: (i) -x, -y, 1 - z] and a C—H··· π interaction [C6—H6··· $Cg1^{ii}$, Cg1 is the centroid of atoms C15 and C16; symmetry code: (ii) -x, 1 - y, 1 - z]. These weak intermolecular interactions extended the title compound molecules into a one-dimensional chain structure (Fig. 2) along the *b* axis.

Experimental

The solution of 4-chlorobenzenamine (12.75 g, 0.1 mol) and triethylamine (14 ml, 0.1 mol) in CCl₄ (20 ml) was placed in a three-necked flask equipped with reflux condenser, dropping funnel and mechanical stirrer. The 1-chloromethylbenzene (13.91 g, 0.11 mol) in CCl₄ (20 ml) was added at a rate such as to produce gentle reflux at room temperature. The crude product was recrystallized from C_2H_5OH ; yield (21.54 g, 90%). *N*-benzyl-4-chlorobenzenamine (10.89 g, 0.05 mol) was stirred at ice-water in the presence of 2-propenoyl chloride (4.9 ml, 0.06 mol) and triethylamine (8.4 ml, 0.06 mol) in CCl4 (20 ml). The mixture was washed with water and the organic layer was dried by MgSO₄. The crude product was purified by flash column chromatography on silica gel (light petroleum/EtOAc, 8:1) to obtain the product (8.23 g, 61%). Colorless crystals of the *N*-benzyl-3-(4-chlorophenyl)-3-phenyl-propanamide suitable for X-ray diffraction were obtained from an ethyl acetate solution over one week.

Refinement

H atoms were placed in calculated positions with C—H distances 0.93–0.97 Å and treated as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids with numbering scheme.

Fig. 2. View of the chain packing of (I) approximately down the *a* axis. H atoms have been omitted except H2 and H6 for clarity [symmetry codes: (i) -x, -y, 1 - z; (ii) -x, 1 - y, 1 - z].

 $F_{000} = 568$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.1 - 25.4^{\circ}$

 $\mu = 0.26 \text{ mm}^{-1}$

T = 291 (2) K

Block, colourless

 $0.30 \times 0.26 \times 0.24 \text{ mm}$

 $D_{\rm x} = 1.276 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 3741 reflections

N-Benzyl-N-(4-chlorophenyl)acrylamide

Crystal data $C_{16}H_{14}CINO$ $M_r = 271.73$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 9.215 (4) Å b = 9.210 (4) Å c = 17.090 (8) Å $\beta = 102.842$ (6)° V = 1414.2 (12) Å³ Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer	3172 independent reflections
Radiation source: sealed tube	1666 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.057$
T = 291(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000)	$h = -11 \rightarrow 11$
$T_{\min} = 0.93, T_{\max} = 0.94$	$k = -11 \rightarrow 11$
11395 measured reflections	$l = -20 \rightarrow 22$

Refinement

Refinement on F^2

Hydrogen site location: inferred from neighbouring sites

Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.064$	$w = 1/[\sigma^2(F_o^2) + (0.05P)^2 + 0.55P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.158$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.06	$\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
3172 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
173 parameters	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.008 (2)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

9.0764(0.0047) x - 0.6878(0.0111) y - 1.1393(0.0196) z = 0.3034(0.0082)

* -0.0078 (0.0020) C1 * 0.0033 (0.0020) C2 * 0.0052 (0.0021) C3 * -0.0091 (0.0020) C4 * 0.0045 (0.0020) C5 * 0.0039 (0.0020) C6

Rms deviation of fitted atoms = 0.0060

4.7161 (0.0105) x - 5.4299 (0.0094) y + 8.4686 (0.0192) z = 4.7812 (0.0131)

Angle to previous plane (with approximate e.s.d.) = 49.79(0.11)

* 0.0026 (0.0019) C8 * 0.0023 (0.0020) C9 * -0.0059 (0.0022) C10 * 0.0046 (0.0023) C11 * 0.0004 (0.0023) C12 * -0.0040 (0.0021) C13

Rms deviation of fitted atoms = 0.0037

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.1090 (3)	0.2996 (3)	0.42821 (14)	0.0487 (7)
C2	0.0953 (3)	0.2145 (3)	0.36048 (15)	0.0586 (8)
H2	0.0888	0.1141	0.3641	0.070*
C3	0.0913 (3)	0.2801 (3)	0.28706 (15)	0.0623 (8)
Н3	0.0824	0.2240	0.2410	0.075*

C4	0.1004 (3)	0.4277 (3)	0.28296 (15)	0.0561 (7)
C5	0.1168 (3)	0.5138 (3)	0.35022 (16)	0.0586 (7)
Н5	0.1250	0.6141	0.3466	0.070*
C6	0.1209 (3)	0.4476 (3)	0.42326 (16)	0.0565 (7)
Н6	0.1318	0.5039	0.4694	0.068*
C7	0.2646 (3)	0.2115 (3)	0.55720 (15)	0.0607 (8)
H7A	0.3338	0.1858	0.5242	0.073*
H7B	0.2612	0.1311	0.5934	0.073*
C8	0.3224 (3)	0.3442 (3)	0.60604 (15)	0.0524 (7)
C9	0.4397 (3)	0.4235 (3)	0.59152 (16)	0.0606 (8)
Н9	0.4840	0.3961	0.5499	0.073*
C10	0.4933 (4)	0.5435 (4)	0.63763 (19)	0.0716 (9)
H10	0.5720	0.5966	0.6264	0.086*
C11	0.4310 (4)	0.5840 (4)	0.69955 (19)	0.0747 (9)
H11	0.4680	0.6637	0.7312	0.090*
C12	0.3137 (4)	0.5065 (4)	0.71468 (19)	0.0776 (10)
H12	0.2704	0.5342	0.7566	0.093*
C13	0.2590 (3)	0.3874 (3)	0.66831 (16)	0.0641 (8)
H13	0.1788	0.3360	0.6791	0.077*
C14	-0.0055 (3)	0.1827 (3)	0.52919 (16)	0.0569 (7)
C15	-0.1547 (4)	0.2031 (3)	0.47419 (17)	0.0622 (8)
H15	-0.1607	0.2433	0.4237	0.075*
C16	-0.2751 (4)	0.1660 (4)	0.4955 (2)	0.0807 (10)
H16A	-0.2702	0.1258	0.5459	0.097*
H16B	-0.3669	0.1796	0.4604	0.097*
Cl1	0.09117 (12)	0.51004 (11)	0.18992 (5)	0.0938 (4)
N1	0.1152 (3)	0.2311 (2)	0.50484 (12)	0.0537 (6)
01	0.0044 (3)	0.1269 (2)	0.59589 (12)	0.0769 (7)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0522 (16)	0.0546 (17)	0.0341 (13)	-0.0008 (13)	-0.0014 (12)	-0.0025 (11)
C2	0.074 (2)	0.0544 (17)	0.0410 (15)	-0.0033 (15)	-0.0019 (14)	-0.0061 (12)
C3	0.073 (2)	0.073 (2)	0.0352 (15)	-0.0065 (16)	0.0005 (14)	-0.0101 (13)
C4	0.0506 (17)	0.074 (2)	0.0385 (15)	-0.0049 (14)	-0.0020 (13)	0.0064 (13)
C5	0.0630 (19)	0.0550 (17)	0.0540 (17)	-0.0017 (14)	0.0053 (14)	0.0020 (13)
C6	0.0683 (19)	0.0553 (18)	0.0420 (15)	0.0004 (14)	0.0036 (14)	-0.0072 (13)
C7	0.0650 (19)	0.0652 (19)	0.0442 (15)	0.0101 (15)	-0.0045 (14)	0.0000 (13)
C8	0.0536 (17)	0.0630 (18)	0.0326 (13)	0.0028 (14)	-0.0074 (12)	0.0008 (12)
C9	0.0597 (19)	0.077 (2)	0.0411 (15)	0.0046 (17)	0.0035 (14)	0.0050 (14)
C10	0.060 (2)	0.081 (2)	0.066 (2)	-0.0098 (17)	-0.0038 (17)	0.0063 (17)
C11	0.069 (2)	0.085 (2)	0.060 (2)	-0.0075 (19)	-0.0065 (17)	-0.0151 (17)
C12	0.079 (2)	0.099 (3)	0.0520 (18)	-0.004 (2)	0.0088 (17)	-0.0219 (17)
C13	0.0554 (18)	0.085 (2)	0.0488 (17)	-0.0074 (16)	0.0057 (14)	-0.0068 (15)
C14	0.074 (2)	0.0511 (17)	0.0410 (15)	-0.0084 (15)	0.0031 (15)	-0.0050 (12)
C15	0.068 (2)	0.0663 (19)	0.0489 (17)	-0.0113 (16)	0.0054 (15)	-0.0012 (14)
C16	0.061 (2)	0.0653 (2)	0.053 (2)	-0.009 (2)	0.0097 (19)	-0.0015 (18)

Cl1	0.1158 (8)	0.1115 (8)	0.0498 (5)	-0.0131 (6)	0.0093 (5)	0.0202 (5)
N1	0.0605 (15)	0.0593 (15)	0.0345 (11)	-0.0032 (12)	-0.0044 (11)	-0.0001 (10)
01	0.0958 (17)	0.0819 (15)	0.0480 (12)	-0.0129 (12)	0.0052 (11)	0.0133 (11)
Geometric parar	neters (Å, °)					
C1—C6		1.372 (4)	C8—0	C13	1.38	2 (4)
C1—C2		1.380 (3)	С9—(C10	1.38	3 (4)
C1—N1		1.443 (3)	C9—1	Н9	0.93	00
C2—C3		1.386 (4)	C10-	-C11	1.36	3 (4)
С2—Н2		0.9300	C10-	-H10	0.93	00
C3—C4		1.365 (4)	C11-	-C12	1.36	7 (5)
С3—Н3		0.9300	C11-	-H11	0.93	00
C4—C5		1.376 (4)	C12-	-C13	1.38	1 (4)
C4—Cl1		1.747 (3)	C12-	-H12	0.93	00
C5—C6		1.382 (4)	C13-	-H13	0.93	00
С5—Н5		0.9300	C14—	-01	1.23	5 (3)
С6—Н6		0.9300	C14—	-N1	1.34	7 (4)
C7—N1		1.476 (3)	C14—	-C15	1.49	5 (4)
С7—С8		1.509 (4)	C15—	-C16	1.28	8 (4)
С7—Н7А		0.9700	C15—	-H15	0.93	00
С7—Н7В		0.9700	C16—	-H16A	0.93	00
С8—С9		1.371 (4)	C16—	-H16B	0.93	00
C6—C1—C2		120.4 (2)	C8—4	C9—C10	121.	2 (3)
C6-C1-N1		120.2 (2)	C8—(С9—Н9	119.	4
C2-C1-N1		119.4 (2)	C10-	-С9—Н9	119.	4
C1—C2—C3		119.4 (3)	C11-	-С10—С9	120.	1 (3)
C1—C2—H2		120.3	C11-	-C10—H10	119.	9
С3—С2—Н2		120.3	С9—(С10—Н10	119.	9
C4—C3—C2		119.4 (3)	C10-	-C11-C12	119.	4 (3)
С4—С3—Н3		120.3	C10–	-C11—H11	120.	3
С2—С3—Н3		120.3	C12-	-C11—H11	120.	3
C3—C4—C5		121.8 (3)	C11-	-C12C13	120.	6 (3)
C3—C4—Cl1		119.2 (2)	C11-	-C12—H12	119.	7
C5—C4—Cl1		119.0 (2)	C13—	-C12—H12	119.	7
C4—C5—C6		118.4 (3)	C12-	-C13C8	120.	5 (3)
C4—C5—H5		120.8	C12—	-C13—H13	119.	8
С6—С5—Н5		120.8	C8—(С13—Н13	119.	8
C1—C6—C5		120.5 (3)	01—	C14—N1	121.	7 (3)
C1—C6—H6		119.8	01—	C14—C15	120.	1 (3)
С5—С6—Н6		119.8	N1—	C14—C15	118.	1 (2)
N1—C7—C8		113.8 (2)	C16—	-C15C14	121.	3 (3)
N1—C7—H7A		108.8	C16—	-C15—H15	119.	4
С8—С7—Н7А		108.8	C14—	-C15—H15	119.	4
N1—C7—H7B		108.8	C15—	-C16—H16A	120.	0
С8—С7—Н7В		108.8	C15—	-C16—H16B	120.	0
H7A—C7—H7B		107.7	H16A	—С16—Н16В	120.	0
C9—C8—C13		118.1 (3)	C14—	-N1-C1	123.	8 (2)
C9—C8—C7		121.8 (3)	C14—	-N1—C7	119.	7 (2)

C13—C8—C7	120.1 (3)	C1—N1—C7	1	16.6 (2)		
Hydrogen-bond geometry (Å, °)						
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A		
C2—H2···O1 ⁱ	0.93	2.53	3.405 (4)	157		
C6—H6···Cg1 ⁱⁱ	0.93	3.02	3.75 (2)	136		
Symmetry codes: (i) $-x, -y, -z+1$; (ii) $-x, -y+1, -z+1$.						

Fig. 1

